We are fascinated by and working on ...

  • Universal matter-wave interferometry & the foundations of physics
    • Towards metal cluster interferometry:
      a new material class in quantum physics to probe the interface to the classical world.  
    • From Polypeptide towards Protein interferometry:
      a new material class to study complexity & dynamics of biomolecules in quantum physics.   
  • Cooling and quantum optomechanics 
    • Optical cooling of non-spherical nanoparticles to explore their rotational quantum states.
    • Trapping & cooling of nanobiological matter to harvest their internal complexity. 
  • Enabling technologies for quantum experiments
    • Sources of metal clusters, dielectric and biological nanomaterials: for matter-wave interferometry.
    • Single-photon charge control and coherent beam splitting of proteins & metal clusters. 
    • Interfeormeter concepts for complex nanomatter.
  • Quantum sensors
    • Matter-wave deflectometers with high better than yocto-Newton force sensitivity:
      ... to measure electro-magnetic, optical & dynamical properties of molecules of interst to biology and chemistry.
    • Trapped nanorotors: 
      ... to realize highly sensitive torque & rotations sensors on the micron scale.  
    • Superconducting nanowire detectors:
      ... for mass spectrometry and molecule analysis, harvesting the sensitivity of quantum phase transitions.

 Latest News

25.05.2020
 

Congratulations to Yaakov on completing his PhD with distinction on May 22nd, 2020.

04.05.2020
 

Can you fly rather than fry a polypeptide, thermally for matter-wave deflectometry? Check this out ...

29.04.2020
 

The Doctoral College Advanced Functional Materials has new PhD openings !

19.03.2020
 

"Matter-wave interference of a native polypeptide"

10.03.2020
 

3D Interactive Research Simulation of Molecule Interferometry now available in Portuguese.

24.02.2020
 

... for the publication on "Coriolis compensation via gravity in a matter-wave interferometer"!